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Book Review: Real-Space Renormalization 

Real-Space Renormalization. Edited by T. W. Burkhardt and J. M. J. 
van Leeuwen. Springer-Verlag, New York, 1982, 214 pp. 

Renormalization group applications in statistical mechanics provide consid- 
erable insight into the mathematical structure underlying the physics of 
critical phenomena. In addition, the collection of numerical results, for 
example, on critical exponents and critical temperatures, continues to grow 
with the proliferation of techniques for doing the calculations. 

Much of the recent activity along this line is in the subset of renormal- 
ization group methods known as "real space." These calculations are done 
in the spirit of Leo Kadanoff's early scaling ideas using block spins. They 
follow a decade of renormalization calculations done predominantly in 
momentum space which start with Kenneth Wilson's early work. The 
popularity of the real-space approach is promoted by its conceptual sim- 
plicity and by the natural way in which its methods are suited to computer 
studies. 

The book, Real-Space Renormalization, is a collection of articles writ- 
ten by people who have made recent contributions in this field. The 
fundamentals of the approach are not taught here. For this one should 
read, for example, the paper by Niemeijer and van Leeuwen in Vol. Six of 
the Domb and Green series, Phase Transitions and Critical Phenomena. The 
purpose of this book is to acquaint the reader with a variety of current 
methods and applications, their strengths, weaknesses, principal results, and 
extensions. The text of each chapter is densely annotated with references 
that provide background and details. 

The first chapter, "Progress and Problems in Real-Space Renormaliza- 
tion," was written by the editors. Results that illustrate the utility of 
real-space renormalization (RSR) include calculations of critical exponents 
in one and two dimensions and the description of nonuniversal properties. 
Weaknesses of the method occur in attempts to calculate critical exponents 
near three dimensions, where use of the r expansion in momentum space 
calculations has produced better results; and in applications to systems 
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with long-range interactions. Basic difficulties arise from the lack (except in 
the case of Monte Carlo renormalization) of a system of internal checks on 
the reliability and accuracy of results, the lack of an expansion parameter 
for systematically improving accuracy, and the consequent dependence on 
drastic truncation whose effects are hard to assess. Included in this chapter 
is a short discussion of Hilhorst's work in exact renormalization, a method 
in which space-dependent couplings are introduced by the boundary condi- 
tions of a finite lattice. There is also a brief account of phenomenological 
renormalization, which places the model on an infinitely long strip of spins 
a finite number of spins wide. Critical exponents are obtained, but correc- 
tions to scaling are not available by this method. 

In "Bond-Moving and Variational Methods in Real-Space Renormal- 
ization," by Burkhardt, the subject matter centers on the Migdal-Kadanoff 
transformation, a procedure which uses bond-moving and decimation, and 
the Kadanoff lower-bound variational transformation, a method that seeks 
a greatest lower bound to the free energy. Because of its simplicity the 
Migdal-Kadanoff transformation has been applied to an impressive list of 
models. It has been successful in the calculation of some exact phase 
diagrams, but calculations of the correlation function are inconsistent with 
widely accepted scaling behavior, and results for critical exponents are 
inexact. 

In the procedures talked about by R. H. Swendsen in "Monte Carlo 
Renormalization," the computer is used to generate configurations that are 
statistically appropriate to the initial Hamiltonian. A RG transformation 
divides these configurations into blocks. The renormalization equations for 
the coupling constants are obtained from correlated functions determined 
by averaging over the configurations. "Large-cell renormalization," in 
which the entire system is reduced to two blocks, converges slowly. The 
method is being extended to percolation and polymer problems. For a 
second method, called "MCRG," which uses small blocks, tables are 
included which show how estimates of critical exponents are affected by the 
number of RG iterations, the number of coupling constants included, and 
the lattice size, in the example of the Ising model in two dimensions. 

"The Real Space Dynamic Renormalization Group," by G. F. Ma- 
zenko and O. T. Vails, contains an analysis of the two-dimensional kinetic 
Ising'modet with spins on a square lattice. Both the statics and dynamics of 
the system are described by the behavior of the Fourier-Laplace transform 
of the time- and space-dependent correlation function of the spins. A 
perturbation expansion is used in which the coupling between cells of spins 
is the small parameter. Included are several plots describing very well the 
susceptibility, space-dependent correlation function, and the time- and 
space-dependent correlation function. Important features of the time- and 
space-dependent correlation function are displayed in various plots in 
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which the temperature extends well above the critical temperature, T c, and 
into a small region below T C. Better results for temperatures less than Tc are 
promised in a later publication by the same authors. 

Calculations in surface physics are discussed in "Application of the 
Real-Space Renormalization to Adsorbed Systems," by M. Schick. Because 
adsorbate atoms tend to locate at adsorption sites RSRG methods are well 
suited to such problems. Preservation of the lowest symmetry of the 
ordered phase is believed to be essential in any renormalization calculation. 
Two methods which accomplish this are included in this chapter. The 
sublattice method is illustrated by the example of a lattice consisting of 
three sublattices. Repulsive nearest-neighbor interaction dominates. The 
calculations are compared with data from helium adsorbed on graphite; 
good fits are achieved for temperatures less than T c. The prefacing method 
with the introduction of vacancies is useful when the underlying symmetry 
of the order-disorder transition is the same as that of a more easily 
analyzed system. For example, the three-state Potts model can be substi- 
tuted for the triangular lattice gas with repulsive nearest-neighbor interac- 
tions. When vacancies are introduced the Ports model becomes the Ports 
model lattice gas. Good agreement with krypton on graphite experiments is 
achieved. Included is a phase diagram showing the critical line, tricritical 
point, and first-order transition. Also mentioned briefly in this chapter is 
the use of the vacancy in cell mapping and the relation of critical exponents 
of the Potts model to those of the eight-vertex model, to find exact thermal 
and magnetic exponents for the q-state Potts model. 

The chapter "Renormalization for Quantum Systems" is authored by 
P. Pfeuty, R. Jullien, and K. A. Penson. Quantum phase transitions are of 
interest because quantum fluctuations need to be taken into account at low 
temperatures. Further interest arises from the possibility of transforming 
statistical mechanical systems in d dimensions to a quantum-mechanical 
system on a lattice of d -  1 space dimensions and one time dimension. A 
method is discussed in which the lattice is divided into blocks of sites. The 
Hamiltonian for the system is considered to be the sum of a block 
Hamiltonian and a portion which is due to the coupling between blocks. 
Eigenstates of the block Hamiltonian (usually low-lying states) are selected 
as basis states for a new Hamiltonian for the lattice of blocks, with the 
coupling between blocks treated perturbatively. The recursion equations 
which evolve for the parameters are used to determine physical quantities 
such as the ground state energy and the energy gap. The correlation 
functions for the spins and, near the fixed point, the critical exponents, can 
be calculated. The number of energy levels included, the number of sites 
per block, and the order of perturbation can, to some extent, affect the 
accuracy of the calculation. 

H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family are the 
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authors of "Position-Space Renormalization Group for Models of Linear 
Polymers, Branched Polymers, and Gels." In this chapter there is a depar- 
ture from the language of thermodynamics. The reference here is to site 
and bond probabilities or weights. The first step is to model the system by a 
lattice of  appropriate dimensionality and coordination number to accom- 
modate the number of active sites on the monomer. Vertices of the lattice 
represent sites; lines represent bonds. To renormalize, a configuration of 
bonds or sites having the symmetry of the lattice is called a renormalized 
bond or site, respectively, provided a specified connectivity rule is satisfied 
by a cluster of bonded sites traversing it. Universality classes are defined by 
critical exponents such as that of the large cluster diameter exponent, v. 
Singularities occur at the value of a weight or probability for which a single 
cluster spans the entire lattice. When the model requires a pair of indepen- 
dent parameters, there is a critical surface on which crossover behavior can 
occur. Flow diagrams demonstrating such effects are included; 

Finally, it should be mentioned that the index is rich in key words used 
in the book, a feature which adds greatly to the book's usefulness as a 
reference. 

Helene Cooper Bets 


